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Standard and embedded solitons in nematic optical fibers
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A model for a non-Kerr cylindrical nematic fiber is presented. We use the multiple scales method to show the
possibility of constructing different kinds of wave packets of transverse magnetic modes propagating through
the fiber. This procedure allows us to generate different hierarchies of nonlinear partial differential equations
which describe the propagation of optical pulses along the fiber. We go beyond the usual weakly nonlinear limit
of a Kerr medium and derive a complex modified Korteweg–de Vries equation~CM KdV! which governs the
dynamics for the amplitude of the wave packet. In this derivation the dispersion, self-focussing, and diffraction
in the nematic fiber are taken into account. It is shown that this CM KdV equation has two-parameter families
of bright and dark complex solitons. We show analytically that under certain conditions, the bright solitons are
actually double-embedded solitons. We explain why these solitons do not radiate at all, even though their wave
numbers are contained in the linear spectrum of the system. We study~numerically and analytically! the
stability of these solitons. Our results show that these embedded solitons are stable solutions, which is an
interesting property since in most systems the embedded solitons are weakly unstable solutions. Finally, we
close the paper by making comments on the advantages as well as the limitations of our approach, and on
further generalizations of the model and method presented.
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I. INTRODUCTION

Theoretical studies on the existence of solitons in liq
crystals ~LCs! started in the late 1960s and early 197
@1–4#, and experimental confirmations were reported sub
quently @5–8#. In the case of static solitons in LCs, the m
lecular configurations may be obtained from the Lagran
equations derived from the Helmholtz free energy, wher
for propagating solitons the continuous change in these c
figurations makes it necessary to take into account the da
ing of the molecular motion. For liquid-crystal waveguide
the nonlinearity necessary for the existence of solitons
provided by the coupling with the optical field.

Coupling of the dynamics of the velocity and direct
fields in LCs to external optical fields renders the relev
dynamical equations highly nonlinear, which makes it p
sible to have solitary waves of the director field with or wit
out involving the fluid motion. Furthermore, the strong co
pling of the director to light makes any director wave mo
easily detectable by optical methods than it is in isotro
fluids, where only the flow field is observable.

Some nonlinear partial differential equations~PDEs! ap-
pearing in the liquid-crystal theory give rise to exact solit
solutions. These are the Korteweg-de Vries~KdV!, nonlinear
Schrödinger ~NLS!, and the sine-Gordon equations@9#. The
KdV equation describes a medium with weak nonlinear
and weak dispersion, whereas the NLS equation descr
situations where weak nonlinearity and strong dispers
prevail, such as the propagation of signals in liquid-crys
optical fibers.

*Corresponding author. Email address: zepeda@fisica.unam.
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Passing continuous laser beams through nematic LCs
veals the existence of static spatial patterns in cylindri
@10# and planar@11# geometries. The basic physical mech
nism which supports these time-independent patterns is
balance between the nonlinear refraction~self-focusing! and
spatial diffraction in the nematic. However, when the prop
gation of wave packets, rather than continuous beams
considered, a different situation occurs. The envelope of
wave packet obeys an NLS equation, which takes into
count self-focussing, dispersion, and diffraction in the ne
atic @12–15#. This equation has soliton solutions who
speed, time, and length scales may be estimated by u
experimentally measured values of the corresponding par
eters @16#. However, the usual analysis of this situation
based on the assumption that the LC behaves as a Kerr
dium and that, consequently, strong dispersion and w
nonlinearity, at orderO(q3), with respect to the field ampli-
tude q, should be taken into account. As will be discuss
below, q measures the ratio of the electric-field energy de
sity and the elastic-energy density of the nematic and it
therefore, a measure of the coupling between the optical fi
and the fluid. However, although truncating the analysis
the O(q3) order may be a very reasonable assumption
solid-state optical media, the soft nature of the LCs sugg
that the neglect of higher-order contributions may not nec
sarily be a good assumption in this case.

Recently, the formation of spatial solitary waves in ne
atic LCs at the light-power level of a few milliwatts ha
attracted a good deal of interest@17–20#. It has been experi-
mentally shown that the nonlinearity of these media can s
port solitons in LC line waveguides@21,22#.

The main purpose of the present work is to developx
©2003 The American Physical Society06-1
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approach that allows to generate PDEs which describe
propagation of optical pulses in nematic LC waveguides
yond the weakly nonlinear limit corresponding to the Ke
medium. More specifically, we show that toO(q4), and as-
suming that attenuation effects are small, the evolution of
amplitude of propagating transverse-magnetic~TM! modes
is governed by an equation with a derivative nonlinear
which is the complex modified KdV~CM KdV! equation,

uz2« uttt2g uuu2ut50, ~1!

see Eq.~31!.
The paper is organized as follows. In Sec. II we introdu

a model of a cylindrical nematic cell and set up ba
coupled equations for the orientational and optical fields.
formulate an iterative procedure to expand these equation
terms of the coupling parameterq, which leads to a specific
hierarchy of PDEs. Then, in Sec. III we derive dynamic
equations governing the evolution of the amplitude of pro
gating TM modes up to the orderO(q4). Rescaling the equa
tions, we show that the standard NLS equation is obtaine
orderO(q3), and that the equation corresponding toO(q4)
is indeed the CM KdV equation~1!. In Sec. IV, soliton so-
lutions to this equation are studied. In particular, it is sho
that the equation has ordinary bright- and dark-soliton so
tions, and a continuous family ofembedded solitons~ESs!,
i.e., solitary waves which exist inside the system’s contin
ous spectrum of linear waves@23#. In Sec. V we discuss why
the ESs can exist in Eq.~1! without emitting any radiation,
even though their wave numbers belong to the linear sp
trum. In Sec. VI we study the stability of the ESs. We co
clude the paper in Sec. VII, which summarizes the res
and compares them to previously published ones. We
point out advantages and limitations of our approach,
discuss possible ways to generalize it.

II. THE MODEL AND BASIC EQUATIONS

We consider a cylindrical waveguide with an isotrop
core of radiusa, dielectric constantec , and a quiescent nem
atic LC cladding of radiusb. The initial orientational state is
depicted in Fig. 1, where the director field obeys the follo
ing axial strong-anchoring boundary conditions,

n̂~r 5a,z!5n̂~r 5b,z!5êz . ~2!

FIG. 1. Schematic representation of a laser beam propaga
through the nematic liquid-crystal cylindrical guide. Transver
magnetic~TM! modes are shown explicitly.
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An optical beam is launched into the guide and propaga
through the LC. If the field is strong enough to exceed
orientation-transition threshold, the initial configuration
changed by reorienting the director field. We assume that
induced reorientation occurs only in the (r ,z) plane, so that

n̂~r ,z!5êrsinu1êzcosu, ~3!

whereêr and êz are the unit vectors of the cylindric coord
nates.

Although the incident beam is neither planar nor Gau
ian, the normal modes within the cavity are cylindrical pla
waves propagating along thez axis. In previous works it has
been shown that only the TM modes, with nonzero com
nentsEr(r ,z,t), Ez(r ,z,t), andHf(r ,z,t) of the electromag-
netic field, couple to the reorientation dynamics of the dire
tor field @14,12,24#. As it can be shown thatEr(r ,z,t) and
Ez(r ,z,t) may be expressed in terms ofHf(r ,z,t), below we
only describe the dynamics of the componentHf(r ,z,t).
The relevant dynamical equations, which take into acco
retardation effects, are given by Eqs.~8! and~9! of Ref. @24#,
namely,

]2u

]z2
1

1

x

]

]r S x
]u

]xD2
sinu cosu

x2

2q2Fcos 2u

x S Ez* E t

dt8
]xHf

]x
1Er* E t

dt8
]Hf

]z D
1

sin 2u

x2 S 2xE r* E t

dt8
]Hf

]z
1Ez* E t

dt8
]xHf

]x D G50,

~4!

a2

c2

]2Hf

]t2
52E dt8

S ]2Hf

]z2
1

]2Hf

]x2 D ~ t2t8!

e'~r 8W ,t8!

1
]2

]t]zE dt8
ea

e'e i
~ t8!F2sin2u

]Hf

]z

1sinu cosu
1

x

]

]x
xHfG~ t2t8!

2
]2

]t]xE dt8
ea

e'e i
~ t8!F2sinu cosu

]Hf

]z

1cos2u
1

x

]

]x
xHfG~ t2t8! ~5!

with

EW~rW,t !5
1

e0
E dt8E t

dt9
ea

e'e i
~ t92t8!n̂n̂•¹W 3HW ~r 8W ,t8!.

~6!

In these equations, we have used dimensionless variablez
[z/a, x[r /a, Hf[Hf /(ce0E0), Ei

a[E i
a/E0 , i 5r ,z,

ng
-
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whereE0 is the amplitude of the incident field. The speed
light in vacuum isc51/Am0e0 , wherem0 and e0 are, re-
spectively, the magnetic permeability and electric permitt
ity of free space. The dielectric anisotropy of the nema
ea[e i2e' , is defined in terms of the dielectric constant f
directions parallel (e i) and perpendicular (e') to the direc-
tor. As mentioned in Sec. I,q2[e0E0

2a2/K is the dimension-
less ratio between the electric-field energy density and
elastic-energy density of the nematic, whereK is its elastic
constant in the equal constants approximation. Thus,q2 is a
measure of the coupling between the optical field and
LC. We stress that, in writing Eqs.~4! and ~5!, the large
difference between the time scales of slow reorientation
namics and rapid variations of the electromagnetic field w
explicitly taken into account, and as a consequence the
derivatives ofu were ignored.

When the coupling between the TM modeHf(r ,z,t) and
the reorientation fieldu(r ,z,t) is negligible (q50), the
propagating modes are represented by quasiplanar wa
However, if the nonlinearities in Eq.~4! are taken into ac-
count by considering finiteq, they cause space and tim
variations of the fieldHf(r ,z,t), due to generation o
higher-order harmonics which feed back to the origin
modes.

We assume that the interaction between the optical fi
and the reorientation in the nematic is stronger than in
weakly nonlinear limit~Kerr medium! which corresponds to
q51 @12#. Furthermore, in all the analysis we neglect all t
backflow effects associated with the reorientation or cau
by external flows@13#. Thus, we solve the coupled equatio
~4! and~5! by assuming the following coupled expansions
u andHf in powers ofq:

u5u (0)1q2uA~J,T!U~x,v!u2u (1)~x!

1q4uA~J,T!U~x,v!u4u (2)~x!1•••, ~7!

Hf~x,z,t !5qUfS x,v01 il
]

]TDA~J,T!1q2U (2)1q3U (3)

1q4U (4)1q5U (5)1c.c.1•••, ~8!

where c.c. stands for the complex conjugate.
The rationale behind this assumption is the following.

indicated in Eq.~4!, the lowest-order coupling betweenu and
Hf occurs at orderq2, and it is therefore reasonable to e
pect that higher-order terms will also be even inq. The fields
u (n) with n50, 1, 2, . . . arecontributions tou at ordern ,
which satisfy the same hard-anchoring homeotropic bou
ary conditions as were given above by Eq.~2!, u(x51)
5u(x5b/a)50. As usual, the amplitudeA(J,T) in Eqs.
~7! and ~8!, which represents an envelope of a narrow wa
packet of widthl[(v2v0)/v0, whose central frequency i
v0, is assumed to be a slowly varying function of the va
ablesJ[lz andT[lt. Herel is a small parameter which
measures the dispersion of the wave packet. In Eqs.~7! and
~8!, Uf(x,v0) is the well-known linear solution forHf
which is given explicitly by@26#
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Uf~x,v0!5J1
2SAecS v0a

c D 2

2b2a2DA p

2gax

3exp~2 ibaz2gax! ~9!

with g5Ae i@b2/e'2(v0 /c)2#. Here J1(x) is the Bessel
function of order 1, andb is the propagation constant, whic
only takes allowed values calculated in Ref.@24#. The terms
proportional toU (n), n52,3, . . . in Eq.~8! are contributions
to the TM modes from the higher-order optical harmon
that are generated by the nonlinearities in Eqs.~5! and ~4!.

Note, however, that the relation between the parameteq
andl is not unique. For instance, when the wave packe
very narrow, this relation isl5q and up toO(q3), the ex-
pansion leads to the standard NLS equation forA(J,T)
~which corresponds to the Kerr medium! @25,12,24#. There-
fore the model may be generalized in various ways. Sincq
and l are small parameters, we assume thatl[qa with
some positivea. Then a51/2 represents a wider anda
52 a narrower wave packet. Note that the presence of hig
powers ofq implies that these higher-order contributions a
smaller than the dominant term in Eq.~7!, which describes a
small-amplitude narrow wave packet.

Inserting expression~7! into Eq. ~5! and expanding in
powers ofq, it is straightforward to rewrite Eq.~5! as

L̂~b,v,x!Hf1q2F̂~Hf!1q4Ĝ~Hf!50, ~10!

where the linearL̂ operator and nonlinear ones,F̂ andĜ, are
defined, respectively, as

L̂[
1

x2e'e i
H 2e'1x2e iFe'S v0

c
aD 2

2~ba!2G
1xe'

]

]x
1x2e'

]2

]x2J , ~11!

F̂[
eauA~z!Uf~x,v!u2

xe'e i
ibaS Ufu (1)~x!13xu (1)~x!

dUf

dx

1Ufx
du (1)~x!

dx DA, ~12!

Ĝ52
eauA~z!Uf~x,v!u4A~z!

x2e'e i
F H ~x2b221!@u (1)~x!#2

2 ixbu (2)~x!12xu (1)~x!
du (1)~x!

dx
2 ix2b

du (2)~x!

dx J
3Uf~x,v!1H x@u (1)~x!#226ix2bu (2)~x!

12x2u (1)~x!
du (1)~x!

dx J dUf~x,v!

dx

1x2@u (1)~x!#2
d2Uf~x,v!

dx2
26ix2bu (2)~x!G . ~13!
6-3
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Zero-order solutions for the orientation, withu (0)50, and
first-order ones, which gives rise tou (1)(x), were found in
Ref. @24# by inserting expressions~7! and ~8! into Eqs.~4!,
~10! and solving the resulting equations. In this way,u (1)(x)
turned out to be

u (1)~x!5

baeaJ1
2SAecS v0a

c D 2

2b2a2D
pe'e ix~a22b2!

$~a22b2!ega(12x)

1~b22x2a2!1eg(a2b)a2~12x2!%. ~14!

To study the dynamics beyond the Kerr approximatio
we need to calculate the fourth-order terms in Eq.~7!, that is,
u (2)(x). To this end, we insert Eqs.~9! and ~7! into Eq. ~4!
and expand the result in powers ofq up to the fourth order.
This leads to

eaga
H 4x2Fe'e iS v0a

c D 2

2b2a2G2e'J
2px2e'e i

2Fb2a22e'S v0a

c D 2G u (1)~x!1
u (2)~x!

x

2
du (2)~x!

dx
2x

d2u (2)~x!

dx2
50. ~15!

After substitutingu (1)(x) from Eq. ~14!, this equation takes
the form

bea
2ga2

2p2e'
2 e i

3x3~a22b2!

H 4x2Fe'e iS v0a

c D 2

2b2a2G2e'J
Fb2a22e'S v0a

c D 2G
3J1

2SAecS v0a

c D 2

2b2a2D $~a22b2!ega(12x)

1~b22x2a2!1eg(a2b)a2~12x2!%

1
u (2)~x!

x
2

du (2)~x!

dx
2x

d2u (2)~x!

dx2
50. ~16!

In spite of its apparent complexity, this linear differenti
equation foru (2)(x) can be easily solved by imposing th
planar strong-anchoring boundary conditions foru, as ex-
plained above. The solution can then be written in terms
the exponential-integral function, and if the resulting expr
sions are approximated by asymptotic expressions for
function, we obtain
03660
,

f
-
is

u (2)~x!5

beae2(b1ax)gJ1
2SAecS v0a

c D 2

2b2a2D
24x2a2b~a1b!2~b2a!p3g2e'

3 e i
2

3$e(11x)ag@A4x41A3x31A2x21A1x1A0#

1e2(b1a)g~B1x1B0!1e(b1ax)g~C4x41C3x3

1C2x21C1x1C0!%. ~17!

While this compact form foru (2)(x) is sufficient for our
discussion below, expressions for the coefficientsA0 , A1 ,
A2 , A3 , A4 , B0 , B1 , C0 , C1 , C2 , C3, andC4 that appear
in Eq. ~17! are given in the Appendix.

To conclude this section, it is relevant to stress that
above derivation ignored dissipative loss in the LC mediu
In fact, the physical condition for the applicability of thi
assumption is that the propagation distance to be passe
excitations~solitons! is essentially smaller than a characte
istic dissipative-loss length. This condition can be read
met in situations of physical relevance.

III. THE ENVELOPE DYNAMICS

We now aim to derive an equation for the envelo
A(J,T) by dint of the same procedure that was used in R
@12# for the weakly nonlinear case. To this end, we substit
Eq. ~8! into Eq. ~10!, and identify the Fourier variables

iba5 ib0a1qa
]

]J1
1q2a

]

]J2
1q3a

]

]J3
1q4a

]

]J4
,

~18!

2 iv52 iv01qa
]

]T
, ~19!

where the variablesJn ,n51,2,3,4, are related to the spati
scales associated with upper harmonics contributions, tha
Z[qnaJn . This substitution leads to an equation

05L̂S ib0a1qa
]

]J1
1q2a

]

]J2
1q3a

]

]J3

1q4a
]

]J4
,2 iv01qa

]

]TD
3Hf~x,z,t !1q2F̂„Hf~x,z,t !…1q4Ĝ„Hf~x,z,t !….

~20!

We now fix a51, which means selection of the type o
the wave packet to be considered; choosinga52 or a
51/2 would imply, respectively, a narrower or wider pack
of the TM modes than fora51. In this case, we collec
contributions to the same power ofq, arriving at the follow-
ing expressions. Forq1,

L̂~ ib0a,2 iv0 ,x!Uf~x,v0!A50, ~21!

for q2,
6-4
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L̂U (1)5S i L̂ ~ ib0a,2 iv0!
]Uf

]v

]

]T
1UfL̂2

]

]T

1L̂1Uf

]

]J1
DA, ~22!

for q3,

L̂U (2)5Ŝ2S ]2Uf

]v2
,
]Uf

]v
,UfD A2F̂„Uf~x,v0!A…,

~23!

and forq4,

L̂U (3)5Ŝ3S ]3Uf

]v3
,
]2Uf

]v2
,
]Uf

]v
,UfD A

1R3S ]Uf

]v
,
]Uf

]x
,
]2Uf

]v]x
,u (1)~x!,

du (1)~x!

dx D uAu2A,

~24!

where L̂n , n51,2, denotes the derivative ofL̂( ib0a,
2 iv0) with respect to its first or second argument. Clea
the same procedure can be carried out fora51/2 or 2.

Note that Eq.~21! is actually the usual dispersion relatio
L̂( ib0a,2 iv0) Uf(x,v0)50, which confirms our approxi-
mation, sinceHf(x,v0) already satisfies this equation to th
first order inq. To simplify Eqs.~22!–~24! we take the first
four derivatives of Eq.~21! with respect tov. This leads to
a set of linear inhomogeneous equations forU (n), the exis-
tence of solutions to which is secured by the so-called al
native Fredholm condition@27#. This condition is fulfilled if
L̂Uf(x,v0)50 and if Uf(x,v0)→0 asx→`. In our case,
this reads explicitly

^L̂U (n),Uf&5E
1

b/a

UfL̂U (n)dx50, n51,2,3,4. ~25!

By applying relations~25! to Eqs.~22!–~24!, substituting the
four first derivatives of Eq.~21! into them, and collecting
terms in front of the same power ofq, we obtain the follow-
ing equations forA(J,T) on each of the spatial scalesJ,
J1 , J2 , J3 , J4, for the successive orders inq,

q2:
]A

]J1
1a

db

dv

]A

]T
50, ~26!

q3:
]A

]J2
1 i

d2b

dv2

]2A

]T2
1 ibn2AuAu250, ~27!

q4:
]A

]J3
2

1

6

d3b

dv3

]3A

]T3
2bn3uAu2

]A

]T
50. ~28!

Here, dimensionless coefficientsn̄2 and n̄3 are defined as
follows:
03660
,

r-

n̄25
1

4
ea

2ba3J1S a

c
A~ecv0

22b2c2! D 4

e2gb12ga

3
2ae23gb1aeg(a24b)1be2g(4a2b)2be23ga

pe i
2b~a22b2!e'~2e22gb1e22ga!

,

~29!

n̄352
e'v0

4b E
1

b/aS i
n̄2

e'

UfFb ]Uf

]v
2Uf

db

dvG
1

3bea

xe'e i
~Uf!3

]Uf

]v

dxu (1)~x!

dx
1

2bea

xe'e i
u (1)~x!

3~Uf!2F2
]Uf

]x

]Uf

]v
1Uf

]2Uf

]x]vG D dx/E
1

b/a

~Uf!2dx,

~30!

The coefficientn̄2 is related with the nonlinear diffraction
index n2 through the expressionn̄2[Kn2 /e0a2. Similarly,
we define a nonlinear diffraction index at the next order b
yond the Kerr approximation byn̄3[v0Kn3 /e0a2; it is pro-
portional to the coefficient in front of the nonlinear term
Eq. ~28!. Note that Eq.~26! simply describes a wave packe
in the linear medium, while Eq.~27! is the well-known NLS
equation which gives rise to robust soliton pulses. The eq
tions corresponding to the ordersq2 andq3 are well known
ones, and they have also been derived and analyzed in
@24#. In the following section we focus on Eq.~28!, which
was derived at orderq4.

IV. DOUBLE EMBEDDED SOLITONS

Equation ~28! may be rewritten in a rescaled form b
introducing the dimensionless variablesu[A/A0 , j
[J4 /Z04, andt[T/T04, whereZ04 andT04 are space and
time scales, andA0 is the initial amplitude of the optica
pulse@28#. In terms of these variables, Eq.~28! becomes

]u

]j
2«

]3u

]t3
2guuu2

]u

]t
50, ~31!

where we have defined the dimensionless coefficients« and
g as

«5
1

6

Z04

T04
3

d3b

dv3
, ~32!

g5bn3A0
2 Z04

T04
. ~33!

In what follows below, we will consider Eq.~31! in the form
of Eq. ~1!, i.e., with j andt replaced byz and t.

Equation~31!, or equivalently Eq.~1!, reduces to the rea
modified Korteweg–de Vries~M KdV ! equation when we
restrictu(z,t) to be real, hence all the real solutions of the
KdV equation, includingN-soliton ones, are also solutions o
6-5
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Eq. ~1!. On the other hand, Eq.~1! also has complex solu
tions which include, as will be discussed below, tw
parameter families of bright and dark complex solitons. A
tually, the existence of these complex solutions of Eq.~1!
was pointed out by Ablowitz and Segur as early as 19
@29#. The precise form of the bright solitons in the particu
case when«56g was presented recently by Karpmanet al.
@30#.

In the general case the bright-soliton solutions to Eq.~1!
may be found by substituting a straightforward trial functi
in this equation,

u~z,t !5A sechS t2az

w Dei (qz1rt ). ~34!

This substitution shows that Eq.~34! is indeed a solution of
Eq. ~1!, provided that

A2w25
6«

g
, ~35!

a53«r 22
1

6
gA2, ~36!

q5
1

2
gA2r 2«r 3. ~37!

Condition ~35! implies that the bright soliton solution~34!
only exists foreg.0, which implies that, in the opposit
case, the nonlinearity and linear dispersion cannot be in
ance. Moreover, since we have five free parameters in
~34! and only three conditions~35!–~37!, these expression
define a two-parameter family of bright soliton solutions
Eq. ~1!, so that the following pairs of the parameters can
chosen arbitrarily: (A,r ), (w,r ), (A,q), or (w,q). The fam-
ily includes, as particular cases, the real one-soliton solut
of the M KdV equation, which are obtained whenr 50.

In a similar way, dark solitons of Eq.~1! can be found by
substituting the trial function

u~z,t !5Ad tanhS t2adz

wd
Dei (qdz1r dt). ~38!

This substitution shows that thisansatzsolves Eq.~1! if the
following conditions are satisfied:

Ad
2wd

252
6 «

g
, ~39!

ad53«r d
22

1

3
gAd

2 , ~40!

qd5gAd
2r d2«r d

3 , ~41!

which are similar to conditions~35!–~37! for the bright soli-
tons. As in the bright-solution case, conditions~39!–~41!
permit us to choose freely any of the following pairs of p
rameters: (A,r ), (w,r ), (A,q), or (w,q). Thus, Eqs.~38!–
~41! define a two-parameter family of dark-soliton solutio
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of Eq. ~1!, Eq. ~39! showing that this family only exists if
«g,0, i.e., exactly in the case opposite to that in whi
bright solitons are found.

Out of the two families of the above soliton solution
~bright and dark! of Eq. ~1!, the bright family is the most
interesting one. In spite of their similarity to ordinary brig
solitons, the bright soliton solutions of Eq.~31! feature a
special property which distinguishes them from ordina
solitary waves, namely, they aredouble-embedded solitons.
The concept of ESs was formulated, in a general form,
Ref. @22#. It refers to solitary waves which do not emit ra
diation, in spite of the fact that the soliton’s wave numb
~spatial frequency! is embeddedin the system’s linear spec
trum. Still earlier, solitons of this type were found in partic
lar models@17#, for instance, in a generalized NLS equatio
involving a quintic nonlinear term@31#. Recently, more sys-
tems supporting ESs have been found@32–40#. To the best
of our knowledge, the existence of ESs has not been repo
before in models of LC media.

So far, the embedded solitons were classified in t
groups, namely, those which obey NLS-like equations~or
systems thereof!, and those which are governed by KdV-lik
equations. In the former case, an ES has its wave num
embeddedin the range of wave numbers permitted to line
waves~as was already mentioned above!. In the latter case,
the velocity of an ES is found in the range of phase velocit
of linear waves. There are, accordingly, two different ways
decide whether a solitary-wave solution to a nonlinear P
system is embedded, viz., thewave numberandvelocitycri-
teria.

In Ref. @30# it was pointed out that Eq.~1! is a particular
case of a more general NLS-like equation possessing E
For this reason, and also in view of the significance of E
~1! for physical applications, it is interesting to determine
the bright-soliton solutions of Eq.~1! may be ESs. It should
be noted that Eq.~1! may be regarded as both a KdV-lik
equation, due to its similarity to the M KdV one,and an
NLS-like equation, because, in the context of wave propa
tion in LCs, Eq.~1! in its complex form plays a role simila
to that of the NLS equation, i.e., the one governing evolut
of a slowly varying envelope of a rapidly oscillating wav
Therefore, it may be possible to applyboth criteria, wave
number and velocity ones, to decide if the soliton solutio
of Eq. ~1! are ESs.

First, we apply the wave number criterion. To this end,
must determine if the wave number of the solution~34! is
contained within the range of the wave numbers allowed
linear waves. To identify the intrinsic wave number of th
solution, we must transform it into the reference frame mo
ing along the time axis with the reciprocal velocitya, see Eq.
~34!. The transformation adds a Doppler term to the solito
internal spatial frequency~wave number!, making it equal to
q1ar. On the other hand, plane-wave solutions to the l
earized version of Eq.~1! in the same reference frame can
sought for as

u~z,t !5expi @kz2v~ t2az!#, ~42!

which leads to the following dispersion relation:
6-6
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k~v!5«v32av. ~43!

Since the range in which function~43! takes its values cover
all the real numbers, including the soliton’s wave numbeq
1ar, all the soliton solutions to Eq.~1!, given by Eqs.~34!–
~37!, are classified as ESs as per the wave number crite

Now, we address the question whether these solitons
also embedded according to the velocity criterion. As
evolution variable in Eq.~1! is the distancez, rather than the
time t, it is the reciprocal velocity which determines if th
moving solutions are embedded according to the velo
criterion. Thus, we should find out if the reciprocal veloc
of the soliton~34!, given by the parametera, is contained
within the range of the reciprocal velocities permitted to l
ear waves. The dispersion relation~43! implies that the re-
ciprocal phase velocities of the linear waves~in the reference
frame moving along with the soliton! are given by

k

v
52a1«v2, ~44!

while the reciprocal velocity of the soliton proper is, obv
ously, zero in the same reference frame. Obviously, exp
sion ~44! takes the value zero ifa« is positive, hence the
soliton solutions given by Eqs.~34!–~37! are ESs according
to the velocity criterion provided thata«.0. As these soli-
tons are also embedded according to the wave number c
rion, we call themdouble-embeddedsolitons. On the other
hand, whena«,0, the soliton solutions of Eq.~1! are only
embedded with respect to the wave number criterion, but
as per the velocity one, therefore in this case we apply
term single-embeddedsolitons.

V. RADIATION INHIBITION AND CONTINUITY
OF THE EMBEDDED SOLITONS

As in any other system with ESs, the fact that the solito
do not emit radiation despite being embedded in the lin
spectrum should be explained. Since the wave numbeq
1ar of the soliton solution~34! is contained in the linea
spectrum defined by the dispersion relation~43!, a resonance
of the soliton is expected with the linear waves whose f
quencies satisfy the condition

q1ar5«v32av. ~45!

Moreover, whena«.0 the soliton’s reciprocal velocitya
coincides with the reciprocal phase velocities («v2) of two
linear waves whose frequencies satisfy the condition

a5«v2, ~46!

consequently one could also expect the soliton to reso
with these waves. Different explanations for the absence
resonant radiation in other systems which support ESs w
proposed@34,41#. However, an explanation for the radiatio
less character of the ESs in Eq.~1! has not been presented

Another unexpected property of the same ESs in Eq.~1! is
the fact that they exist in a continuous family. In most cas
ESs are isolated solutions; usually they do not appea
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families, although examples of continuous families of E
are known too, for instance, in a fifth-order KdV equatio
@35#. It is also necessary to explain why Eq.~1! has a two-
parameter family of the ES solutions.

As we show below, the radiationless character of the E
in Eq. ~1! is the consequence of a special balance betw
the linear and the nonlinear terms of this equation. To und
stand how these terms interact, it will be helpful to separ
their effects by considering the following linear driven equ
tion:

]u

]z
2«

]3u

]t3
2guu0u2

]u0

]t
50, ~47!

where the source is built of a solutionu0(z,t) to Eq.~1!. It is
clear that the same functionu0 is also a solution to Eq.~45!.

We now define the double Fourier transform ofu(z,t),

ũ~k,v!5
1

2pE2`

` E
2`

`

u~z,t !e2 i (kz2vt)dzdt, ~48!

and Fourier transform Eq.~47!, to obtain

ũ~k,v!5 i
F̃~k,v!

2k1«v3
, ~49!

where

F0~z,t !5guu0u2
]u0

]t
~50!

is the source in Eq.~47!.
To understand the mechanism of the cancellation of

emission of radiation, let us consider that

u0~z,t !5A sechS t2az

w Dei (qz1rt ). ~51!

In this case, the calculation of the Fourier transform ofF0
and substitution in Eq.~50! yield a result

ũ~k,v!5

pwA sechFp2 w~r 1v!G
2~r 1v!a2q1ev3 H 2

A2gr

3
2

w2A2gr 3

3

1
A2gv

6
2

w2A2gr 2v

2
1

w2A2gv3

6 J
3d$@~r 1v!a1q#2k%. ~52!

At first sight, this expression seems to imply that a resona
with the radiation waves should occur for frequencies
which the denominator, which is a third-order polynomial
v, vanishes, which is actually tantamount to Eq.~45!. More-
over, if q5r 50, the same argument shows that a resona
at the frequencies defined by Eq.~46! should be expected
Observe, however, that the numerator on the right-hand
of Eq. ~52! also contains a third-order polynomial inv. Con-
6-7
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RODRÍGUEZ et al. PHYSICAL REVIEW E 68, 036606 ~2003!
sequently, if the two polynomials happen to coincide, th
will cancel each other, which also implies the cancellation
the resonant generation of the radiation modes. Equating
coefficients in front of powers ofv in the two polynomials in
Eq. ~52!, we obtain three equations which, after some m
nipulations, take thepreciseforms of Eqs.~35!–~37!. Thus,
these three equations are the necessary and sufficient c
tions for the mutual cancellation of the two polynomials
Eq. ~52!. This explains why the forcing termF0(z,t) of the
form ~51! does not generate any radiation, provided that
parametersA, a, w, q, andr satisfy Eqs.~35!–~37!. Further-
more, observe that the polynomial that appears in the
merator of the expression~52! contains the nonlinear coeffi
cient g, while the polynomial in the denominator contain
the dispersion coefficient«. Consequently, the cancellatio
between these two polynomials is a result of the bala
between the nonlinearity and dispersion in Eq.~1!.

In the case of the full equation~1!, the same cancellation
argument explains why an initial condition of the form

u~z50,t !5A sechS t

wDeirt ~53!

does not radiate at the frequencies defined by Eqs.~46! and
~47! if A andw satisfy Eq.~36!. On the other hand, ifA and
w do not satisfy this condition, we expect the resonance
occur. In the following section, we will verify numericall
that this is indeed the case.

To close this section, it is relevant to stress that the c
cellation of the two polynomials in Eq.~52! imposes only
three conditions, while solution~34! involves five param-
eters. Therefore, the cancellation conditions do not uniqu
determine the soliton parameters, which explains why
soliton solution~34!–~37! involves two arbitrary parameters
thus defining a two-parametercontinuousfamily of the ESs.

FIG. 2. Evolution of the amplitude of two perturbed singl
embedded solitons of Eq.~1! ~with «51 and g56). The upper
curve corresponds to the initial condition~59! with A050.815
.As , w05ws , and r 05r s , whereAs , ws , and r s are the values
~54!–~56!. The lower curve corresponds to a similar initial cond
tion with A050.765,As @A(z) andz are dimensionless quantities#.
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VI. STABILITY OF THE EMBEDDED SOLITONS

In this section we will study the stability of the brigh
soliton solutions of Eq.~1!. As was explained in Sec. IV
these solitons may be eithersingle embeddedor double em-
bedded, depending on the sign of the parameter combinat
a«. In the following we will separately consider the cases
positive and negativea«.

We begin by considering a single-embedded soliton of
~1!, setting«51 andg56 @these values were chosen as th
correspond to those at which the relatedHirota equation
@42#, which is connected to Eq.~1! by the Galilean transform
@30#, is an exactly integrable one@43##. We start with the
following values of the soliton parameters:

As5A5

8
'0.790, ~54!

ws5A8

5
, ~55!

r s51/A24, ~56!

as521/2, ~57!

qs5
11

6A24
. ~58!

These values satisfy conditions~35!–~37!, and therefore they
characterize an exact bright soliton of the form~34!. Since
as«,0, this soliton is a single-embedded one~i.e., it is em-
bedded solely according to the wave number criterion!.

To test stability of this soliton, we consider an initial co
dition of the form

u~z50,t !5A0 sechS t

w0
Dexp~ ir 0t !, ~59!

wherew05ws and r 05r s , but A0 is slightly different from
As . If we giveA0 a value 0.815, which is larger thanAs , the
numerical solution of Eq.~1! shows that the pulse moves t
the right along the temporal axis with a reciprocal veloc
equal to20.58 , which is slightly lower thanas , and the
pulse’s amplitude evolves as shown in the upper curve
Fig. 2. The observation that the reciprocal velocity of t
perturbed pulse is lower thanas is consistent with Eq.~36!,
which indicates thata should decrease ifA is increased. Fig-
ure 2 ~the upper curve! shows that the pulse’s amplitud
stabilizes and approaches an equilibrium value close toA
50.84. The temporal profile of the pulse atz550 is dis-
played in Fig. 3. It shows a small-amplitude radiation wa
emitted by the trailing edge of the pulse. The frequency co
position of this tiny radiation wave can be determined
calculating the Fourier transform~FT! of the radiation con-
tained in the interval 40<t<168. The inset in Fig. 3 show
the power spectrum~i.e., the square of the FT amplitude! of
6-8
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STANDARD AND EMBEDDED SOLITONS IN NEMATIC . . . PHYSICAL REVIEW E68, 036606 ~2003!
this radiation, which contains two peaks located at the
quenciesn1520.10 andn250.12. These peaks are close
the resonant frequencies (n560.07) predicted by the reso
nance condition

qs1asr s5«v32asv ~60!

@cf. Eq. ~45!# and thepartial resonancecondition @40#

2~qs1asr s!5«v32asv. ~61!

These radiation peaks imply that the perturbed pulse e
radiation according to the way the soliton’s wave numbe
embedded in the spectrum of linear waves.

If we now consider an initial condition of form~59!, with
w05ws , r 05r s , and A050.765,As , the behavior of the
perturbed pulse is similar. In this case the amplitude evol
as shown in the lower curve of Fig. 2 where we can see
the pulse’s amplitude approaches an equilibrium value c
to A50.74. The reciprocal velocity of the perturbed pulse
20.42, which is slightly higher thanas . This change is con-
sistent with Eq.~36!, which indicates thata should increase
if A is diminished.

The two curves shown in Fig. 2 demonstrate that
single-embedded soliton solutions of Eq.~1! are stable. This
is an interesting result, since usually ESs display a w
~nonlinear! one-sided instability@34#. In fact, the complete
stability of the ESs in Eq.~1! may be expected, due to th
fact that in this case we are dealing with a continuous tw
parameter family of the ESs, while in most other syste
ESs are isolated solutions, which explains their nonlin
instability.

Figure 2 also shows that if the amplitude of one of t
single-embedded solitons of Eq.~1! is slightly increased, the
perturbed soliton stabilizes itself at an even higher am
tude. On the contrary, if the soliton’s amplitude is sligh
decreased, the perturbed soliton stabilizes at a still lo
amplitude. This behavior can be better understood if we a
lyze the evolution of the perturbed solitons of Eq.~1! by
means of the averaged variational technique introduced

FIG. 3. Temporal profile~at z550) of the perturbed single
embedded soliton of Eq.~1! whose amplitude~as a function ofz) is
shown in the upper curve of Fig. 2. The spectrum of the radiatio
shown in the inset (u and t are dimensionless quantities!.
03660
-

its
s

s
at
e

e

k

-
s
r

i-

er
a-

y

Anderson@44#, which is one of the approximately analytica
methods used successfully in nonlinear optics@45–51#, see
also a recent review@52#.

In order to apply the variational technique, we start w
the ansatzof the ordinary form,

u~z,t !5A~z!sechF t2V~z!

W~z! Gexp$ i @Q~z!1R~z! t1P~z! t2%.

~62!

Introducing this trial function in the Lagrangian density
Eq. ~1!,

L5 i ~uzu* 2uz* u!1 i«~u uttt* 2u* uttt!

1
ig

2
@u2u* ut* 2~u* !2u ut#, ~63!

and integrating over time, we calculate the averaged~effec-
tive! Lagrangian

L5E
2`

`

Ldt. ~64!

The following Euler-Lagrange equations can be easily
rived from L:

28AWQ82
24«AR

W
28«AR3W1

16

3
gA3RW

5 f 1~P,P8,R8!, ~65!

24A2Q81
12«A2R

W2
24«A2R31

4

3
gA4R

5 f 2~P,P8,A8,V8,W8,R8!, ~66!

f 3~P,P8,A8,V8,W8,R8!50, ~67!

A2W5A2~0!W~0!, ~68!

2
12«A2

W
212«A2R2W1

4

3
gA4W

5 f 4~P,P8,A8,V8,W8,R8!, ~69!

2
24«A2V

W
224«A2R2VW1

8

3
gA4VW

5 f 5~P,P8,A8,V8,W8,R8!, ~70!

where the primes stand for thez derivatives, and the expres
sions f n(P,P8,A8,V8,W8,R8) are nonlinear functions o
their arguments. Their explicit forms are not given, as th
will not be needed in what follows.

We now resort to search for fixed points of Eqs.~65!–
~70!, which are stationary solutions of the form

A85W85R85P85P50, ~71!

Q85const[q, ~72!

is
6-9
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V85const[a. ~73!

When we insert these conditions into Eqs.~65!–~70!, we find
that f n50 ~for n51, . . . ,5) andconsequently, the following
relations are obtained

A2W25
18«

g
, ~74!

a53«R22
1

6
gA2, ~75!

q5
1

2
gA2R2«R3, ~76!

A2W5const5A2~0!W~0!. ~77!

Equation~74! is the variational counterpart of Eq.~35!, and
the expressions fora and q coincide exactly with those in
Eqs. ~36! and ~37!. On the other hand, Eq.~77! applies not
only to stationary solutions, but to general dynamical eq
tions as well, with variableA(z) and W(z), as it expresses
the variational version of the exact conservation law~which
is simply the energy conservation in the case of nonlin
optics @52#!.

Equation~77! is plotted by thin curves, corresponding
two different initial conditions, in Fig. 4. This figure als
shows plots~the bold curve! of Eq. ~74!, corresponding to
«51 andg56. This diagram helps to understand why t
soliton @characterized by the parameters~54!–~58! and
marked by point E on the bold curve in Fig. 4#, if perturbed
by increasing or decreasing its initial amplitude, stabiliz
itself, as was observed in Fig. 2.

FIG. 4. The bold curve passing through the pointE
5(AE ,WE)5(0.790, 2.192) is the plot of Eq.~75! with «51 and
g56. The thin line passing through point 1 plots Eq.~78! with
A(0)50.815.AE and W(0)5WE . The thin line passing through
point 3 is also a plot of Eq.~77!, with A(0)50.765,AE and
W(0)5WE .
03660
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We take, as the initial perturbed soliton, the one cor
sponding to point 1 in Fig. 4. It has the same width as
unperturbed soliton at point E, but a larger amplitude,

A150.815.0.7905AE . ~78!

According to Eq.~77!, the perturbed pulse must evolve slid
ing along the thin curve passing through point 1. The th
curve intersects the equilibrium bold curve at point 2, whi
is therefore a fixed point. Within the framework of the vari
tional approximation proper, the trajectory may perfor
some oscillations in a vicinity of this fixed point; however,
effective loss due to the emission of small amounts of rad
tion by the perturbed soliton~which was observed above i
direct simulations! is taken into regard, the trajectory will b
attracted to the fixed point, and will eventually end up bei
trapped at this point, thus implying the stabilization of t
soliton very close to point 2, which has the value of t
amplitude 0.840.

Similarly, starting at the initial condition corresponding
point 3, the soliton will slide along the thin line until it get
stuck at the stable fixed point 4. As the amplitude cor
sponding to point 4 is 0.740, the origin of the stabilizati
process observed in direct simulations displayed in the lo
curve of Fig. 2 is now clear.

So far we considered relaxation of perturbed sing
embedded soliton. Now we proceed to the stability
double-embedded ones. To this end, we set«5g51, and
choose the soliton parameters

Ad5A5

8
'0.790, ~79!

wd5A48

5
, ~80!

r d51/4, ~81!

ad51/12'0.08, ~82!

qd51/16. ~83!

These values satisfy conditions~35!–~37!, therefore they de-
fine an exact bright soliton of the form~34!. Sincead«.0,
this soliton is a double-embedded one. We perturb it by t
ing an initial condition of the form~59! with w05wd , r 0
5r d , andA050.815.Ad .

The numerical solution of Eq.~1! corresponding to this
initial condition shows that the perturbed pulse moves alo
the temporal axis with a reciprocal velocity equal to 0.0
which is slightly lower thanad @this lower velocity is con-
sistent with Eq.~36!#. Simultaneously, the pulse’s amplitud
oscillates as shown in the upper curve of Fig. 5. This fig
again shows a trend of the perturbed pulse to stabilize. H
ever, in this case~with the double-embedded soliton! the
stabilization process is slower, and it is necessary to pa
greater distance~along thez axis! to observe the damping o
6-10
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the amplitude oscillations. The upper curve of Fig. 5 sho
that the pulse’s amplitude eventually approaches an equ
rium value close to 0.84.

The trailing edge of the perturbed double-embedded s
ton emits a tiny radiation wave train whose frequency co
ponents can be determined by calculating the FT of the
diation contained in the interval 45<t<109 ~for z5200).
The spectrum obtained in this way is shown in Fig. 6. In t
figure two peaks are seen. The bigger one corresponds t
frequencyn520.046 (v520.289), which corresponds t
the negative solution of Eq.~46!, and therefore it is a conse
quence of the resonance of the perturbed soliton with a lin
wave whose phase velocity is equal to the soliton’s veloc
On the other hand, the smaller radiation peak is locate
n50.078 (v50.490), which is very near to the only re
root (v51/2) of the resonance condition

qd1adr d5«v32ad v. ~84!

FIG. 5. Evolution of the amplitude of two perturbed doubl
embedded solitons of Eq.~1! ~with «5g51). The upper curve
corresponds to the initial condition~59! with A050.815.Ad , w0

5wd , andr 05r d @whereAd , wd , andr d are given by Eqs.~79!–
~81!#, and the lower curve corresponds to a similar initial conditi
with A050.765,Ad @A(z) andz are dimensionless quantities#.

FIG. 6. Spectrum~obtained atz5200) of the radiation emitted
by the perturbed double-embedded soliton whose amplitude~as a
function of z) is shown in the upper curve of Fig. 5. The ins
shows the spectrum~obtained atz5100) of the radiation emitted
when the sign ofr d is reversed~i.e., whenr d521/4).
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Therefore, the latter peak is due to the fact that the solito
wave numberqd1ad r d is contained in the range of wav
numbers permitted to linear waves.

As the larger radiation peak~the one atn520.046) ex-
ists due to the fact that the soliton is embedded accordin
the velocity criterion, one could assume that in this case~i.e.,
when a double-embedded soliton is perturbed! the radiation
emitted by the pulse is mainly due to the velocity embedd
of the soliton. However, such a conclusion would be wron
The left radiation peak in Fig. 6 actually has a larger amp
tude because the FT of the complete solution is sligh
shifted to the left~as a consequence ofr 0 being positive!,
and it is this shift which enhances the left radiation peak

To verify the latter point, one can consider a slightly d
ferent initial condition, characterized by the parametersA0

50.815, w05wd5A48/5, andr 052r d521/4. As in this
caser 0 is negative, the FT of the complete solution will b
shifted to the right, and this shift will enhance the right r
diation peak. In the inset of Fig. 6 we show the spectrum
the radiation emitted in this case by the perturbed doub
embedded soliton~for z5100). As expected, in this case th
radiation peak due to the wave number embedding of
soliton ~i.e., the right peak! is much higher than the on
existing due to the velocity embedding~the very small peak
on the left!. We thus conclude that both embeddings, wa
number and velocity, are important to explain the emission
radiation by perturbed double-embedded solitons.

If we now consider an initial pulse of form~59! with w0
5wd , r 05r d , andA050.765,Ad , the numerical solution
of Eq. ~1! shows that the pulse’s amplitude again perform
damped oscillatory behavior, as shown in the lower curve
Fig. 5. In this case, the pulse’s amplitude approaches an e
librium value close to 0.74.

VII. CONCLUDING REMARKS

In this work, using the multiple scales method, we ha
derived a model for the propagation of a wave packet of T
modes along a cylindrical liquid-crystal waveguide beyo
the usual weakly nonlinear limit of the Kerr medium. In th
case, the amplitude of the wave packet obeys a nonlin
equation, Eq.~1! or ~31!, which exhibits a derivative nonlin-
earity. This complex modified KdV equation gives rise to t
two-parameter families of bright, Eqs.~34!–~37!, and dark,
Eqs. ~38!–~41!, solitons. The bright-soliton solutions of Eq
~1! are ESs~or sometimes double-embedded ones!, i.e., they
do not emit any radiation, in spite of the fact that their wa
numbers~and sometimes their velocities too! fall into the
linear spectrum of the system. We have shown that the ph
cal nature of the existence of the ESs inside the continu
spectrum is the balance between the dispersion and no
earity in Eq.~1!. Moreover, it was concluded that these E
are completely stable solutions, while, in most previou
considered models, they are weakly unstable. It was
served that perturbed single-embedded solitons relax
new equilibrium state faster than double-embedded ones

The coupled expansions foru and Hf in powers ofq,
which were introduced in Sec. II, can be extended to hig
orders. This leads to nonlinear equations with the quintic i
6-11
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O(q5), nonlinearity. Investigation of the correspondin
model is currently in progress. Also, as discussed in Sec.
up to the orderO(q4) considered here, the same procedure
construct narrower (a52) or wider (a51/2) wave packets
of TM modes can also be carried out.

Another possible generalization of our model, not de
with here, is a possibility to take into account hydrodynam
flows beyond the Kerr-medium approximation, that will i
evitably couple to the reorientation dynamics of the liqu
crystal. Actually, the inclusion of the flow is unavoidab
owing to the fluid nature of the system. However, the co
sideration of the hydrodynamical part of the system subs
tially complicates the problem. Some effects produced
03660
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this generalization were considered, at the level of the N
approximation, i.e., at orderO(q3), in Ref. @13#.
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APPENDIX

Expressions for the coefficientsA0 , A1 , A2 , A3 , A4 , B0 , B1 , C0 , C1 , C2 , C3, andC4, which appear in Eq.~17!:

A0~a,b;g,e'!54a3b~a1b!ge' , ~A1!

A1~a,b;b,g,m,ea ,e' ,k0!5a2$224ab~a1b!@b2ea2e'~ea1e'!mk0
2#1g@16a~3a2b!b2b2ea22~a21ab18b2!e'

116ab2~23a1b!e'~ea1e'!mk0
2#2ab~a1b!e'g2%, ~A2!

A2~a,b;b,g,m,ea ,e' ,k0!5212ab~a1b!g@2e'14a2~b2ea2e'~ea1e'!mk0
2!#, ~A3!

A3~a,b;b,g,m,ea ,e' ,k0!5a$24b~a1b!~b2ea2e'~ea1e'!mk0
2!12g@32a2bb2ea18ab2b2ea18b3b2ea1ae'27be'

28b~4a21ab1b2!e'~ea1e'!mk0
2#1g2b~a1b!e'%, ~A4!

A4~a,b;b,g,m,ea ,e' ,k0!516ab~a1b!g@2b2ea1e'~ea1e'!mk0
2#, ~A5!

B0~a,b;g,e'!522ab~a2b!~a1b!2ge' , ~A6!

B1~a,b;b,g,m,ea ,e' ,k0!5ab~a2b!~a1b!2@24b2ea224e'~ea1e'!mk0
21g2e'#, ~A7!

C0~a,b;g,e'!54ab3~a1b!ge' , ~A8!

C1~a,b;b,g,m,ea ,e' ,k0!5b2$24ab~a1b!@b2ea2e'~ea1e'!mk0
2#1g@216a2b~a23b!b2ea22~8a213ab13b2!e'

116a2b~a23b!e'~ea1e'!mk0
21ab~a1b!ge'%, ~A9!

C2~a,b;b,g,m,ea ,e' ,k0!5212ab~a1b!g$2e'14b2@b2ea2e'~ea1e'!mk0
2#%, ~A10!

C3~a,b;b,g,m,ea ,e' ,k0!5b$24a~a1b!@2b2ea1e'~ea1e'!mk0
2#12g@8a3b2ea18a2bb2ea132ab2b2ea25ae'

13be'28a~a21ab14b2!e'~ea1e'!mk0
2#2a~a1b!e'g2%, ~A11!

C4~a,b;b,g,m,ea ,e' ,k0!516ab~a1b!g@2b2ea1e'~ea1e'!mk0
2#. ~A12!

An explicit form of u (2)(x) is
6-12
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u (2)~x!5

beae2(b1ax)gJ1
2SAecS v0a

c D 2

2b2a2D
24x2a2b~a1b!2~b2a!p3g2e'

3 e i
2 H 2a2e(11x)ag~12x!Fa2H 24baxb2ea248bxb2gea~b2ax!

12~xa22b!ge'1baxe'g2124bxaS v0a

c D 2

~2112bg22xage'e i!J 1bxaH 8baxb2ea~312bg22xag!

12e'g~xa22b1gbax/2!28bxa~312bg22xag!e'e iS v0a

c D 2J 1ab~a2b!~a1b!2e2(b1a)gS 22ge'

1xaH 24b2ea1e'Fg2224e iS v0a

c D 2G J D1b~xa2b!e(b1ax)gH 6baxge'~b1xa!116a4x~b1xa!

3gFb2ea2e iS v0a

c D 2G J 1a2F28eaxab2@3b16b2g1xa~312xag!#2ge'@4~b23xa!1xag~b1xa!#

18xa@3b16b2g1xa~312xag!#e'e iS v0a

c D 2G1aS 210x2a2ge'14b2F26xab2ea112x2a2b2gea2ge'

2g2xae'/426xa~2xag21!e'e iS v0a

c D 2G14bxaF26xab2ea24x2a2b2gea1ge'/22g2xae'/4

12xa~2xag13!e'e iS v0a

c D 2G D J . ~A13!
t
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